Funktionsprinzip des Stromabschaltventils für Batterieenergiespeicher
Unsere faltbaren Photovoltaik-Energiespeichercontainer setzen neue Maßstäbe in der mobilen und nachhaltigen Energieversorgung. Mit einem durchdachten Design und robuster Technologie bieten wir skalierbare Lösungen für flexible Einsatzorte – ob in der Notstromversorgung, auf Baustellen oder in entlegenen Regionen.
Dank der leichten Transportierbarkeit, schnellen Inbetriebnahme und modularen Struktur sind unsere Container die ideale Lösung für die autonome Stromversorgung ohne feste Infrastruktur. Durch die Kombination aus Solarpanelen und innovativer Speichertechnik ermöglichen wir zuverlässige Strombereitstellung – jederzeit und überall.
Photovoltaik: Strom erzeugen für den eigenen Gebrauch oder für das Stromnetz. Der Begriff Photovoltaik setzt sich aus dem griechischen Wort für Licht und dem Nachnamen des Physikers Alessandro Volta zusammen. Er gilt als Erfinder der elektrischen Batterie. Ihm zu Ehren wurde im 19. Jahrhundert die Maßeinheit für die elektrische Spannung
Wie beeinflusst der Stromverlauf die Batteriekapazität?
Wegen der Überspannungen und der elektrochemischen Abläufe in der Zelle ist die Batteriekapazität vom Stromverlauf abhängig. Mithilfe eines elektrischen Ersatzschaltbildes kann man die statischen und dynamischen Effekte der Spannung an den Klemmen einer Batterie modellieren.
Was ist ein elektrochemischer Energiespeicher?
sind elektrochemische Energiespeicher, in denen die Zellreaktion kontinuierlich ablaufen kann, beispielsweise Brennstoffzellen und Redox-Flow-Batterien. Elektrostatische und induktive Speicher nutzen die Energie elektrischer oder magnetischer Felder zur Speicherung.
Was sind physikalische Batteriemodelle?
In physikalisch motivierten Batteriemodellen werden die physikalischen, chemischen und thermodynamischen Prozesse innerhalb einer Batterie nachgebildet und miteinander verkoppelt. Mithilfe physikalischer Modelle kann man das Verhalten einer Batterie viel genauer ilden als durch einfache Ersatzschaltbilder.
Wie ändert sich die Leerlaufspannung von Lithium-Ionen-Batterien?
Auch in Lithium-Ionen-Batterien setzt sich die Klemmenspannung aus einer Leerlaufspannung und einem dynamischen Anteil zusammen: Sind die Klemmen der Batterie offen, liegt an den Klemmen die Leerlaufspannung U0 (t) an. Die Leerlaufspannung von Lithium-Ionen-Batterien verändert sich mit dem Ladezustand.
Wie ändert sich die Klemmenspannung beim Laden einer Batterie?
Wird die Batterie entladen, sinkt die Klemmenspannung U (t) ab; wird sie geladen, steigt die Klemmenspannung U (t) an. Ein Teil dieser Spannungsveränderung tritt dabei sofort bei Stromfluss auf, ein Teil klingt mit der Zeit auf. Dieses Verhalten wird im Ersatzschaltbild in . 6.4 durch einen ohmschen Widerstand Ri und ein RC-Glied modelliert.
Was ist das Batteriemanagement?
Außerdem ist das Batteriemanagement (BMS) von Autobatterien ausgefeilter, siehe Abschnitt 6.13. Beim Laden und Entladen werden die maximalen Ströme in Abhängigkeit von Ladezustand, Temperatur und Alterung genau kontrolliert.