Energiespeicherbetrieb mit flüssiger Luft

Unsere faltbaren Photovoltaik-Energiespeichercontainer setzen neue Maßstäbe in der mobilen und nachhaltigen Energieversorgung. Mit einem durchdachten Design und robuster Technologie bieten wir skalierbare Lösungen für flexible Einsatzorte – ob in der Notstromversorgung, auf Baustellen oder in entlegenen Regionen.

Dank der leichten Transportierbarkeit, schnellen Inbetriebnahme und modularen Struktur sind unsere Container die ideale Lösung für die autonome Stromversorgung ohne feste Infrastruktur. Durch die Kombination aus Solarpanelen und innovativer Speichertechnik ermöglichen wir zuverlässige Strombereitstellung – jederzeit und überall.

Luft zu Power. Für die auch Liquid Air Energy Storage (LAES) genannte Technik benötigt das Gründer-Quartett zwei Container. Im ersten saugt ein Ventilator Luft an, die dann mit überschüssigem

Was sind die Nachteile von flüssigluftspeicher?

Bislang konnten Flüssigluftspeicher allerdings kaum mit den anderen Speichertechnologien konkurrieren. Die Nachteile: Bei den Transformationsprozessen geht üblicherweise mehr als die Hälfte der Energie verloren. Der Rest kann nur wenige Tage gespeichert werden. Dadurch wird der so aufbewahrte Strom vergleichsweise teuer.

Welche Vorteile bietet ein neuer Stromspeicher auf Basis flüssiger Luft?

Ein neuer Stromspeicher auf Basis flüssiger Luft soll die Versorgungssicherheit bei Nutzung erneuerbarer Energien garantieren. München (Deutschland). Erneuerbare Energien wie Solar-, Wind- und Wasserkraft können zwar CO2-neutral Strom produzieren, unterliegen in ihrer Leistung aber einer hohen Volatilität.

Was ist flüssige Luft?

In Großbritannien geht jetzt eine außergewöhnliche Speichertechnologie in einen großen Praxistest: flüssige Luft. Bei diesem Verfahren wird der Strom genutzt, um Luft zu komprimieren und auf minus 190 Grad Celsius abzukühlen.

Wie finanziert sich ein Stromspeicher?

Viele Stromspeicher sind bei den aktuellen Verhältnissen am Energiemarkt unwirtschaftlich. Ein Speicher finanziert sich dadurch, dass er billigen Strom aufnimmt und ihn in Zeiten der Knappheit wieder abgibt, wenn Strom teurer ist.

Was sind die Vorteile von Flüssigluft?

Die Vorteile von Flüssigluft: Sie benötigt weniger Platz. Zu Details des kyrogenen, also tiefkalten Speicher, etwa zu seiner Isolierung, dem genutzten Material oder auch zur Anzahl der Kiesspeicher und den voraussichtlichen Preisen der Container wollen die Gründer derzeit keine Angaben machen, da sie hierzu ein Patent anmelden.

Welche Arten von erneuerbaren Energien gibt es?

Erneuerbare Energien wie Solar-, Wind- und Wasserkraft können zwar CO2-neutral Strom produzieren, unterliegen in ihrer Leistung aber einer hohen Volatilität. Es sind deshalb Speichersystem erforderlich, die Strom für Zeiten mit schwacher Produktion vorhalten.

Faltbare Photovoltaik-Energiespeicherlösungen in Deutschland

Der steigende Energiebedarf und die Energiewende erfordern clevere Speichertechnologien. Unsere faltbaren PV-Containerlösungen sind kompakt, mobil und nachhaltig – ideal für private, gewerbliche und industrielle Anwendungen. Ob netzunabhängige Systeme oder Ergänzungen für bestehende PV-Anlagen – unsere Technologie garantiert Effizienz und Zuverlässigkeit.

Transportable PV-Container

Transportable PV-Container

Unsere faltbaren Speicherlösungen lassen sich platzsparend transportieren und schnell aufstellen – ideal für temporäre Einsätze, Baustellen oder abgelegene Regionen.

Energie für Gewerbebetriebe

Energie für Gewerbebetriebe

Unsere vorkonfigurierten Module kombinieren Solar- und Speichertechnik für maximale Autarkie und Wirtschaftlichkeit in gewerblichen Einrichtungen jeder Größe.

Skalierbare Speicherlösungen

Skalierbare Speicherlösungen

Für industrielle Nutzer bieten wir Hochleistungsspeicher mit integrierter PV-Technik – robust, skalierbar und für die dauerhafte Nutzung im industriellen Umfeld konzipiert.

Individuelle Systemlösungen für jeden Bedarf

Unsere Dienstleistungen decken die gesamte Wertschöpfungskette ab – von der Bedarfsanalyse über die Umsetzung bis hin zum Betrieb Ihrer maßgeschneiderten Speicherlösung. Effizienz, Zuverlässigkeit und Nachhaltigkeit stehen dabei stets im Fokus.

Projektplanung & Strategie

Wir analysieren Ihre Standortbedingungen und entwickeln gemeinsam mit Ihnen eine wirtschaftliche und technisch optimale Lösung für Ihre Anforderungen im Bereich PV und Speicher.

Technische Umsetzung & Montage

Unsere Fachleute kümmern sich um die vollständige Integration Ihrer Systeme – vom Aufbau vor Ort bis zur Inbetriebnahme durch zertifizierte Techniker.

Energie-Monitoring & Steuerung

Mit intelligenten Steuerungssystemen behalten Sie Ihren Energieverbrauch im Blick und optimieren laufend Ihre Betriebskosten durch datenbasierte Analysen.

Internationale Lieferung

Unsere globale Lieferlogistik sorgt für einen reibungslosen und termingerechten Versand Ihrer Containerlösungen – egal ob innerhalb Europas oder weltweit.

Faltbare Photovoltaik-Containerlösungen für Energieautarkie in Deutschland

Entdecken Sie unsere fortschrittlichen, faltbaren Energiespeichercontainer – speziell entwickelt für den deutschen Markt. Diese innovativen Lösungen kombinieren Photovoltaik-Technologie mit effizientem Energiemanagement und ermöglichen eine netzunabhängige Stromversorgung für Wohnhäuser, Gewerbebetriebe und abgelegene Standorte. Dank der modularen Bauweise sind sie platzsparend, mobil einsetzbar und lassen sich unkompliziert in bestehende Systeme integrieren. Profitieren Sie von nachhaltiger Energiegewinnung, reduzieren Sie Ihre Energiekosten und erhöhen Sie Ihre Versorgungssicherheit – alles in einem kompakten System.

Faltbarer Photovoltaik-Energiespeichercontainer für Haushalte

Faltbarer Photovoltaik-Energiespeichercontainer für Haushalte

Unsere kompakte Lösung für Haushalte ermöglicht eine effiziente Speicherung von Solarenergie, ideal für ländliche Gebiete und netzferne Standorte. Maximieren Sie Ihre Energieautarkie mit dieser flexiblen Lösung.

Faltbare Solarstromspeicherung für gewerbliche Nutzung

Faltbare Solarstromspeicherung für gewerbliche Nutzung

Optimierte Solarstromspeicherung für Unternehmen mit der Möglichkeit, das System bei Bedarf zu erweitern. Dieses System ist sowohl für netzgebundene als auch netzunabhängige Anwendungen geeignet und bietet hohe Effizienz.

Industrie-Photovoltaik-Energiespeichercontainer

Industrie-Photovoltaik-Energiespeichercontainer

Für industrielle Umgebungen konzipiert, bietet dieser robuste Photovoltaik-Energiespeicher eine zuverlässige und unterbrechungsfreie Stromversorgung für kritische Prozesse und ist auch unter extremen Bedingungen einsatzfähig.

Vielseitige Photovoltaik-Energiespeicherlösungen

Vielseitige Photovoltaik-Energiespeicherlösungen

Ein System, das Solarstromspeicherung und -erzeugung für verschiedene Anwendungen kombiniert. Es ist ideal für private Haushalte, Unternehmen und industrielle Anwendungen, die höchste Effizienz und Flexibilität erfordern.

Mobile Solarstromgenerator-Lösung für abgelegene Gebiete

Mobile Solarstromgenerator-Lösung für abgelegene Gebiete

Ein tragbares, leistungsstarkes System für die Stromversorgung von abgelegenen Standorten oder für schnelle Projekte. Es bietet sofortige Solarenergie ohne aufwändige Installation.

Smart Monitoring-System für Photovoltaik-Batterien

Smart Monitoring-System für Photovoltaik-Batterien

Unser intelligentes System zur Überwachung von Solarstrombatterien nutzt fortschrittliche Algorithmen, um die Leistung zu optimieren und die Systemzuverlässigkeit langfristig zu gewährleisten.

Modulare Solarstromspeicherlösungen für flexible Anwendungen

Modulare Solarstromspeicherlösungen für flexible Anwendungen

Die modulare Bauweise dieser Speicherlösung ermöglicht eine maßgeschneiderte Anpassung an unterschiedliche Bedürfnisse, sei es für den privaten Bereich oder für Unternehmen.

Echtzeit-Solarstromleistungsüberwachungssystem

Echtzeit-Solarstromleistungsüberwachungssystem

Mit diesem System erhalten Sie Echtzeit-Daten zur Analyse der Solarstromleistung und können die Effizienz Ihrer Anlage gezielt optimieren, um maximale Erträge zu erzielen.

Flüssige Luft als Energiespeicher

Luft zu Power. Für die auch Liquid Air Energy Storage (LAES) genannte Technik benötigt das Gründer-Quartett zwei Container. Im ersten saugt ein Ventilator Luft an, die dann mit überschüssigem

Flüssiger Sauerstoff

Normale Verbrennungen werden mit Luftsauerstoff gespeist. Da Luft nur zu 21% aus Sauerstoff und zu 78% aus Stickstoff besteht, finden die meisten Verbrennungen an Luft sehr gut kontrollierbar statt. Der große Stickstoffanteil

Highview Power testet Flüssigluft zur

Bei der Liquid Air Energy Storage-Technologie, der sogenannten kryogenen Energiespeicherung, wird Luft unter Einsatz erneuerbarer Energien komprimiert und durch Herunterkühlung auf -196 Grad

Demonstrationen mit flüssigem Stickstoff

Von Experimenten mit flüssiger Luft oder mit flüssigem Sauerstoff ist abzuraten, da hierbei gefährliche Explosionen auftreten können. Sicherheitsempfehlungen für den Umgang mit flüssigem Stickstoff Stickstoff verflüssigt sich unterhalb einer Temperatur von −195,82 °C zu einer farblosen, bei Zimmertemperatur dampfenden Flüssigkeit.

Energie speichern mit flüssiger Luft

Bei dieser Form der Energiespeicherung wird Energie in verflüssigten Gasen (etwa Luft) zwischengespeichert. Liquid Air Energy Storage (LAES)-Einrichtungen bergen den

Aggregatzustand einfach erklärt • fest, flüssig, gasförmig

Aggregatzustand: einfach erklärt Aggregatzustände: fest, flüssig, gasförmig Aggregatzustand Änderung mit Beispielen mit kostenlosem Video

Fraktionierte Destillation von Luft

Flüssige Luft wird in ein vorgekühltes Reagenzglas gegeben. Zuerst verdampft Stickstoff, dann Sauerstoff. Dies lässt sich mit der Glimmspanprobe leicht nachweisen. Hintergrund Flüssige Luft kann durch Abkühlen eines Modellierballons, der mit Luft gefüllt ist, gewonnen werden. Mit

Energie speichern mit flüssiger Luft

Schon zwischen 1899 und 1902 wurde ein mit flüssiger Luft betriebenes Fahrzeug mit dem Namen Liquid Air entwickelt. Die Technologie wird bereits in einem britischen Kraftwerk im Pilotbetrieb eingesetzt. Das Flüssigluftspeichersystem besteht aus drei Hauptteilen: Dem Ladeteil, dem Speicherteil und dem Entladeteil. Der Ladeteil ist in Betrieb

Luft: Zusammensetzung, Eigenschaften & Formel

Eigenschaften der Luft: Unsichtbarkeit, Masse, Volumen, Kompressibilität und schlechte Wärmeleitung. Druck der Luft: beeinflusst die physikalischen und chemischen Verhaltensweisen der Luft. Nimmt mit zunehmender Höhe ab. Reinhaltung der Luft: Schadstoffe in der Luft können zu gesundheitlichen Problemen und Umweltproblemen führen.

Strom speichern mit flüssiger Luft

Hier setzt das Forschungsvorhaben Kryolens - Kryogene Luftenergiespeicherung an. Mit Blick auf den Energiemarkt sind verschiedene erfolgversprechende LAES-Speichervarianten definiert worden, die weiterentwickelt werden sollten.

Flüssigluft-Energiespeicherung | Linde Gas Deutschland

Luft kann in flüssiger Form als Energiespeichermedium verwendet werden: Umgebungsluft wird mit Strom verflüssigt, kann in kryogenen (tiefkalten) Tanks gespeichert werden und bei Bedarf in einer Entspannungsturbine wieder verstromt werden. Zusammen mit einem Partner hat Linde ein erstes großskaliges System entwickelt und bereitet die

Linde-Verfahren – Chemie-Schule

Dies geschieht in der Regel mit flüssiger Luft. Das schließlich erhaltene flüssige Helium siedet unter Atmosphärendruck bei 4,2 K. Dies ist der niedrigste Siedepunkt aller Elemente. Durch Abpumpen des Helium-Gases über dem siedenden Helium wird letzterem Verdampfungswärme entzogen, so dass sich seine Temperatur weiter senken lässt.

Experimente mit flüssigem Stickstoff

Flüssiger Stickstoff besitzt eine Temperatur von -196 °C. Viele Experimente damit sind Klassiker bei Chemie- oder Physikshows. Längerer Kontakt mit Flüssigstickstoff führt zwangsläufig zu Erfrierungen. Luftballon: Ein mit Luft befüllter und anschließend verknoteter Ballon wird in Flüssigstickstoff getaucht.

Strom speichern mit flüssiger Luft

Deutlich zu erkennen sind die Speicherbehälter für die verflüssigte Luft und der Kältespeicher, der die wichtige Funktion der Effizienzsteigerung des Energiespeichers übernimmt. © Mitsubishi Hitachi Power Systems Europe GmbH | Schematische Darstellung eines

Factsheet – Flüssigluft-Energiespeicher (LAES)

Der Factsheet erklärt, wie Flüssigluft-Energiespeicher (LAES) funktionieren und welche Vorteile sie für die Energiespeicherung bieten.

Luft, Luftverflüssigung, flüssiger Stickstoff

Luft, Luftverflüssigung, flüssiger Stickstoff. Luft . Wichtige Bestandteile – eine grobe Einteilung • N: 78% (Stickstoff), entdeckt 1772/1774, Sdp.: -196°C, Gefrierpunkt: -210°C Luft wird bei Zimmertemperatur in einen Kompressor gegeben, der den Druck des Gases erhöht (auf etwa 200 bar). Die Temperatur erhöht sich (Joule-Thomson

Wie macht man Luft flüssig?

Wie macht man Luft flüssig? Mit dem bereits 1895 entwickelten und patentierten Linde-Verfahren. Es beruht im Prinzip genau wie ein Haushaltskühlschrank darauf, dass sich Gase erwärmen, wenn sie verdichtet werden, und abkühlen, wenn sie »entspannt« sind, d. h., sich wieder ausdehnen. Vergrößert man ihr Volumen wieder, sinkt der Druck und

Linde-Verfahren

Dies geschieht in der Regel mit flüssiger Luft. Das schließlich erhaltene flüssige Helium siedet unter Atmosphärendruck bei 4,2 K. Dies ist der niedrigste Siedepunkt aller Elemente. Durch Abpumpen des Helium-Gases über dem siedenden Helium wird letzterem Verdampfungswärme entzogen, so dass sich seine Temperatur weiter senken lässt.

Luft – Physik-Schule

Bei einer hyperbaren Sauerstofftherapie (HBO) werden die Taucherkrankheit und andere Erkrankungen in einer Druckkammer mit bis zu 1,8 bar Luft behandelt. Sauerstoffkreislauf. Der in der Luft enthaltene Sauerstoff ist für alle aeroben Lebewesen zum Leben notwendig. Durch Atmung führen sie Sauerstoff ihrem Stoffwechsel zur Verbrennung

Flüssiger Wasserstoff: Verwendungen und

Was ist flüssiger Wasserstoff, wie wird er hergestellt, genutzt und gespeichert? das gereinigt und sicher aufbewahrt werden muss, um zu verhindern, dass es sich mit der kondensierten Luft in der Atmosphäre

Wann wird Luft flüssig?

Jedoch gibt es einige Voraussetzungen, die gewährleistet sein müssen, damit aus dem gasförmigen Aggregatszustand der Luft ein flüssiger wird. Carl Paul Gottfried Linde - Urgestein der Kältetechnik. Man erhält also ein Gasgemisch niedriger Temperatur mit vergleichsweise hohem Druck. Darauf folgend wird der Druck wieder heruntergefahren

Energiewende: Batterie aus flüssiger Luft soll Öko-Strom

In einer riesigen Batterie auf Basis von flüssiger Luft soll Solar- und Windenergie gespeichert werden. Das Verfahren, um das es sich handelt, wird LAES (Liquid Air Energy Storage) genannt. Dabei wird die Luft flüssig und kann bei niedrigem Druck in einem Tank gelagert werden, mit der 700-fachen Dichte der Umgebungsluft. Wenn später

Luft

Luft kann mittels Destillation flüssiger Luft in ihre Bestandteile zerlegt werden, dies erfolgt meistens mit Hilfe des Linde-Verfahrens. Zusammensetzung. Zusammensetzung der Luft Gas Formel Volumenanteil Massenanteil Hauptbestandteile der trockenen Luft

Flüssige Luft als Alternative

Flüssige Luft als Alternative. Etwas aufwändiger ist die Speicherung von Energie in Form von flüssiger Luft (liquid air). Überschüssiger Strom komprimiert dabei Luft, kühlt sie auf -190 Grad Celsius herunter und verflüssigt sie anschließend durch Expansion – genau wie in jeder kryogenen Luftzerlegungsanlage.

Erste Großanlage speichert Windstrom in flüssiger Luft

Nordengland bekommt die erste Großanlage, die Strom in flüssiger Luft speichern kann. Sie soll das Netz stabilisieren. Die Anlage wird „grüner" sein als eine Batterie, sagen die Entwickler

Sprengversuche mit flüssiger Luft

Sprengversuehe mit fliissiger Luft. Versuche, die flfissige Luft als Sprengmittel zu verwendem warden be- Kleine Mitteilungen. 991 reits in den letzten Jahren des vorigea Jahrhunderts angestellt, naehdem es durch die Erfindung yon Pro- fessor Linde gelungen war, fiiissige Luft in grof~en Men- gen herznstellen.

Stromspeicher auf Basis von flüssiger Luft | Energyload

Strom in flüssiger Luft speichern. Flüssigluftspeicher, auch kryogene Speicher genannt, nutzen Strom, um Luft auf minus 190 Grad Celsius abzukühlen. Dabei verflüssigt sich

Energiewende: Flüssigluft-Batterien in England und

Ein britisches Unternehmen nutzt dazu die Expansionskraft von flüssiger Luft. Um überschüssigen Ökostrom für dunkle und windlose Zeiten zu speichern sind Flüssigluft-Batterien eine

Sprengvorschrift zum Sprengen mit flüssiger Luft

Sprengvorschrift zum Sprengen mit flüssiger Luft Mehr anzeigen Weniger anzeigen. zu Verbundenen Objekten Alle ausklappen. Alle einklappen. Angaben zum Objekt Archivaliensignatur. Bayerisches Hauptstaatsarchiv, DV, BayHStA, Druckvorschriften R 1439. Mehr anzeigen Weniger

Flüssige Luft als Energiespeicher

Stromspeichern mit flüssiger Luft. Das Münchner Start-up Phelas hat mit der Liquid Air Energy Storage (LAES) Technologie nun eine Lösung vorgestellt, die diesen Preis pro Kilowattstunde Speicherkapazität

Die Zusammensetzung der Luft

Verbinde einen Kolbenprober mit genau 100 ml Luft über ein Verbrennungsröhrchen mit einem zweiten Kolbenprober, der auf Null steht. Im Verbrennungsröhrchen befindet sich zwischen Glaswolle ein Kupfernetz, das nun erhitzt wird. Nun presst man die Luft mehrmals von einem Kolbenprober in den anderen. Danach läßt man das Verbrennungsröhrchen abkühlen und liest

Bei welcher temperatur verflüssigt sich luft?

In welcher Reihenfolge sind die Hauptbestandteile der Luft bei der Destilation von flüssiger Luft? Vom absoluten Nullpunkt - 237,15 °C = 0 K aus gesehen siedet Sauerstoff also höher als Stickstoff. In einem Behälter mit flüssiger Luft wird also Stickstoff zuerst verdampfen und der Behälter wird sich mit flüssiger Luft anreichern.

Phelas entwickelt einen Stromspeicher aus flüssiger Luft

Ein Fahrzeug mit flüssiger Luft hätte bis 2030 geringere Lebenszyklusemissionen als ein Fahrzeug, das mit Strom oder Wasserstoff angetrieben wird; ein Kühlaggregat für einen LKW mit flüssiger Luft würde eine

Mit flüssiger Luft die Energiewende schaffen

In flüssiger Luft lässt sich viel Energie speichern. Und Luft gibt es überall. Start-up Mit flüssiger Luft die Energiewende schaffen. 23.12.2020 - 16:47 Uhr. 1. Das Gründerteam von Phelas

Verbrennungsreaktionen in flüssigem Sauerstoff

Flüssiger Sauerstoff ist ein außerordentlich starkes Oxidationsmittel. Das liegt hauptsächlich daran, dass kondensierte Materie viel dichter vorliegt. Normale Luft besteht zu ca. 80 % aus Stickstoff und nur zu ca. 20 % aus Sauerstoff – ein Mol davon kommt also nur in mehr als 100 L Luft vor. Obwohl Flüssigsauerstoff mit einem

Linde-Verfahren – Wikipedia

Um das Linde-Verfahren zur Wasserstoff- und Helium-Verflüssigung anwenden zu können, muss man diese Gase erst unter die Inversionstemperatur vorkühlen. Dies geschieht in der Regel mit flüssiger Luft. Das schließlich erhaltene flüssige Helium siedet unter Atmosphärendruck bei 4,2 K. Dies ist der niedrigste Siedepunkt aller Elemente in natürlicher Zusammensetzung. [4]

Vorheriger Artikel:Wie berechnet man Signal- und Systemenergie Nächster Artikel:Ersatzteile für Energiespeicherbatterien

Deutschland Neue Energie

Unser Experten-Team für innovative faltbare Solarspeichersysteme in Deutschland

Wir bei EK ENERGY haben ein spezialisiertes Team, das sich auf die Entwicklung fortschrittlicher und nachhaltiger faltbarer Solarspeichersysteme für den deutschen Markt fokussiert. Unsere Lösungen bieten hohe Effizienz und Flexibilität für sowohl private Haushalte als auch gewerbliche Kunden. Wir setzen auf moderne Technologien, die eine zuverlässige, umweltfreundliche und kosteneffektive Energieversorgung sicherstellen.

Max Müller - Leiter der Entwicklung flexibler Solarspeichersysteme

Mit mehr als einem Jahrzehnt Erfahrung in der Entwicklung von Solarspeichersystemen führt Max Müller unser Team und arbeitet an der Weiterentwicklung innovativer, faltbarer Speicherlösungen, die sowohl für den privaten Gebrauch als auch für gewerbliche Anwendungen ideal geeignet sind.

Anna Schmidt - Fachfrau für Solarwechselrichterintegration

Anna Schmidt ist eine führende Expertin in der Integration von Solarwechselrichtern in Solarspeichersysteme. Ihre Arbeit sorgt dafür, dass die Energieeffizienz maximiert und die Systemlebensdauer verlängert wird, was besonders für industrielle Anwendungen von entscheidender Bedeutung ist.

Sophie Weber - Direktorin für den internationalen Markt im Bereich Solarspeicher

Verantwortlich für die globale Expansion und Marktstrategie, sorgt Sophie Weber dafür, dass unsere flexiblen Solarspeichersysteme weltweit erfolgreich eingeführt werden und optimiert dabei Logistik und Lieferketten für einen reibungslosen Betrieb.

Lena Becker - Spezialistin für maßgeschneiderte Solarspeicherlösungen

Mit fundierter Expertise hilft Lena Becker Kunden bei der Auswahl von Solarspeichern, die perfekt auf ihre spezifischen Anforderungen zugeschnitten sind. Ihre Lösungen bieten sowohl für Haushalte als auch für Unternehmen eine passgenaue und effiziente Energieverwaltung.

Julia Hoffmann - Ingenieurin für intelligente Steuerungssysteme

Julia Hoffmann ist verantwortlich für die Entwicklung und Wartung von fortschrittlichen Steuerungssystemen, die eine präzise Überwachung und effiziente Nutzung von Solarspeichern ermöglichen, speziell für gewerbliche und industrielle Anwendungen.

Individuelle Beratung für Ihre faltbaren Solarspeicherlösungen

EK ENERGY Kundenservice

  • Montag bis Freitag, 09:30 - 17:30
  • China · Shanghai · Fengxian Bezirk
  • +86 13816583346
  • [email protected]

Unser Team bietet Ihnen maßgeschneiderte Beratung und Lösungen für faltbare Solarspeicher, passende Wechselrichter und individuelle Energiemanagementsysteme, die sowohl für private Haushalte als auch für gewerbliche Anwendungen optimiert sind.

Kontaktieren Sie uns für detaillierte Informationen

* Wir werden uns innerhalb eines Werktages bei Ihnen melden und Ihnen die besten Lösungen für Ihre Solarspeicheranforderungen anbieten.

© EK ENERGY – Alle Rechte vorbehalten. Wir entwickeln intelligente Lösungen für Solarenergie-Speichersysteme und bieten nachhaltige Technologien für die Energiewelt von morgen. Sitemap